In the most general sense of the word, a cement is a binder, a substance which sets and hardens independently, and can bind other materials together. The word "cement" traces to the Romans, who used the term "opus caementicium" to describe masonry which resembled concrete and was made from crushed rock with burnt lime as binder. The volcanic ash and pulverized brick additives which were added to the burnt lime to obtain a hydraulic binder were later referred to as cementum, cimentum, cäment and cement. Cements used in construction are characterized as hydraulic or non-hydraulic.
The most important use of cement is the production of mortar and concrete - the bonding of natural or artificial aggregates to form a strong building material which is durable in the face of normal environmental effects.
Cement should not be confused with concrete as the term cement explicitly refers to the dry powder substance. Upon the addition of water and/or additives the cement mixture is referred to as concrete, especially if aggregates have been added.
Types of modern cement
Portland cement
Cement is made by heating limestone with small quantities of other materials (such as clay) to 1450°C in a kiln. The resulting hard substance, called ‘clinker’, is then ground with a small amount of gypsum into a powder to make ‘Ordinary Portland Cement’, the most commonly used type of cement (often referred to as OPC).
Portland cement is a basic ingredient of concrete, mortar and most non-speciality grout. The most common use for Portland cement is in the production of concrete. Concrete is a composite material consisting of aggregate (gravel and sand), cement, and water. As a construction material, concrete can be cast in almost any shape desired, and once hardened, can become a structural (load bearing) element. Portland cement may be gray or white.
Portland cement blends
These are often available as inter-ground mixtures from cement manufacturers, but similar formulations are often also mixed from the ground components at the concrete mixing plant.[7]
Portland Blastfurnace Cement contains up to 70% ground granulated blast furnace slag, with the rest Portland clinker and a little gypsum. All compositions produce high ultimate strength, but as slag content is increased, early strength is reduced, while sulfate resistance increases and heat evolution diminishes. Used as an economic alternative to Portland sulfate-resisting and low-heat cements.[8]
Expansive Cements contain, in addition to Portland clinker, expansive clinkers (usually sulfoaluminate clinkers), and are designed to offset the effects of drying shrinkage that is normally encountered with hydraulic cements. This allows large floor slabs (up to 60 m square) to be prepared without contraction joints.
White blended cements may be made using white clinker and white supplementary materials such as high-purity metakaolin.
Colored cements are used for decorative purposes. In some standards, the addition of pigments to produce "colored Portland cement" is allowed. In other standards (e.g. ASTM), pigments are not allowed constituents of Portland cement, and colored cements are sold as "blended hydraulic cements".
Very finely ground cements are made from mixtures of cement with sand or with slag or other pozzolan type minerals which are extremely finely ground. Such cements can have the same physical characteristics as normal cement but with 50% less cement particularly due to their increased surface area for the chemical reaction. Even with intensive grinding they can use up to 50% less energy to fabricate than ordinary Portland cements
Non-Portland hydraulic cements
Pozzolan-lime cements. Mixtures of ground pozzolan and lime are the cements used by the Romans, and are to be found in Roman structures still standing (e.g. the Pantheon in Rome). They develop strength slowly, but their ultimate strength can be very high. The hydration products that produce strength are essentially the same as those produced by Portland cement.
Slag-lime cements. Ground granulated blast furnace slag is not hydraulic on its own, but is “activated” by addition of alkalis, most economically using lime. They are similar to pozzolan lime cements in their properties. Only granulated slag (i.e. water-quenched, glassy slag) is effective as a cement component.
Supersulfated cements. These contain about 80% ground granulated blast furnace slag, 15% gypsum or anhydrite and a little Portland clinker or lime as an activator. They produce strength by formation of ettringite, with strength growth similar to a slow Portland cement. They exhibit good resistance to aggressive agents, including sulfate.
Calcium aluminate cements are hydraulic cements made primarily from limestone and bauxite. The active ingredients are monocalcium aluminate CaAl2O4 (CA in Cement chemist notation) and Mayenite Ca12Al14O33 (C12A7 in CCN). Strength forms by hydration to calcium aluminate hydrates. They are well-adapted for use in refractory (high-temperature resistant) concretes, e.g. for furnace linings.
“Natural” Cements correspond to certain cements of the pre-Portland era, produced by burning argillaceous limestones at moderate temperatures. The level of clay components in the limestone (around 30-35%) is such that large amounts of belite (the low-early strength, high-late strength mineral in Portland cement) are formed without the formation of excessive amounts free lime. As with any natural material, such cements have very variable properties.
Geopolymer cements are made from mixtures of water-soluble alkali metal silicates and aluminosilicate mineral powders such as fly ash and metakaolin.
Setting and hardening of cement
When water is mixed with Portland cement, the product sets in a few hours and hardens over a period of weeks. These processes can vary widely depending upon the mix used and the conditions of curing of the product, but a typical concrete sets (i.e. becomes rigid) in about 6 hours, and develops a compressive strength of 8~ MPa in 24 hours. The strength rises to 15~ MPa at 3 days, 23~ MPa at one week, 35~ MPa at 4 weeks, and 41~ MPa at three months. In principle, the strength continues to rise slowly as long as water is available for continued hydration, but concrete is usually allowed to dry out after a few weeks, and this causes strength growth to stop.
Setting and hardening of Portland cement is caused by the formation of water-containing compounds, forming as a result of reactions between cement components and water. Usually, cement reacts in a plastic mixture only at water/cement ratios between 0.25 and 0.75. The reaction and the reaction products are referred to as hydration and hydrates or hydrate phases, respectively. As a result of the reactions (which start immediately), a stiffening can be observed which is very small in the beginning, but which increases with time. The point in time at which it reaches a certain level is called the start of setting. The consecutive further consolidation is called setting, after which the phase of hardening begins.
Stiffening, setting and hardening are caused by the formation of a microstructure of hydration products of varying rigidity which fills the water-filled interstitial spaces between the solid particles of the cement paste, mortar or concrete. The behaviour with time of the stiffening, setting and hardening therefore depends to a very great extent on the size of the interstitial spaces, i. e. on the water/cement ratio. The grain size of the cement and admixtures, e.g. micro silica or nano silica affects the particle distance and therefore the final compressive strength. Typical grain sizes for cement vary between 10 and 20µm. A good mixing and dispersing of all cement and admixture particles is needed to obtain optimal concrete properties after hardening.[4] The hydration products primarily affecting the strength are calcium silicate hydrates ("C-S-H phases"). Further hydration products are calcium hydroxide, sulfatic hydrates (AFm and AFt phases), and related compounds, hydrogarnet, and gehlenite hydrate. Calcium silicates or silicate constituents make up over 70 % by mass of silicate-based cements. The hydration of these compounds and the properties of the calcium silicate hydrates produced are therefore particularly important. Calcium silicate hydrates contain less CaO than the calcium silicates in cement clinker, so calcium hydroxide is formed during the hydration of Portland cement. This is available for reaction with supplementary cementitious materials such as ground granulated blast furnace slag and pozzolans. The simplified reaction of alite with water may be expressed as:
2Ca3OSiO4 + 6H2O → 3CaO.2SiO2.3H2O + 3Ca(OH)2
This is a relatively fast reaction, causing setting and strength development in the first few weeks. The reaction of belite is:
2Ca2SiO4 + 4H2O → 3CaO.2SiO2.3H2O + Ca(OH)2
This reaction is relatively slow, and is mainly responsible for strength growth after one week. Tricalcium aluminate hydration is controlled by the added calcium sulfate, which immediately goes into solution when water is added. Firstly, ettringite is rapidly formed, causing a slowing of the hydration (see tricalcium aluminate):
Ca3(AlO3)2 + 3CaSO4 + 32H2O → Ca6(AlO3)2(SO4)3.32H2O
The ettringite subsequently reacts slowly with further tricalcium aluminate to form "monosulfate" - an "AFm phase":
Ca6(AlO3)2(SO4)3.32H2O + Ca3(AlO3)2 + 4H2O → 3Ca4(AlO3)2(SO4).12H2O
This reaction is complete after 1-2 days. The calcium aluminoferrite reacts slowly due to precipitation of hydrated iron oxide:
2Ca2AlFeO5 + CaSO4 + 16H2O → Ca4(AlO3)2(SO4).12H2O + Ca(OH)2 + 2Fe(OH)3
The pH-value of the pore solution reaches comparably high values and is of importance for most of the hydration reactions.
Soon after Portland cement is mixed with water, a brief and intense hydration starts (pre-induction period). Calcium sulfates dissolve completely and alkali sulfates almost completely. Short, hexagonal needle-like ettringite crystals form at the surface of the clinker particles as a result of the reactions between calcium- and sulfate ions with tricalcium aluminate. Further, originating from tricalcium silicate, first calcium silicate hydrates (C-S-H) in colloidal shape can be observed. Caused by the formation of a thin layer of hydration products on the clinker surface, this first hydration period ceases and the induction period starts during which almost no reaction takes place. The first hydration products are too small to bridge the gap between the clinker particles and do not form a consolidated microstructure. Consequently the mobility of the cement particles in relation to one another is only slightly affected, i. e. the consistency of the cement paste turns only slightly thicker. Setting starts after approximately one to three hours, when first calcium silicate hydrates form on the surface of the clinker particles, which are very fine-grained in the beginning. After completion of the induction period, a further intense hydration of clinker phases takes place. This third period (accelerated period) starts after approximately four hours and ends after 12 to 24 hours. During this period a basic microstructure forms, consisting of C-S-H needles and C-S-H leafs, platy calcium hydroxide and ettringite crystals growing in longitudinal shape. Due to growing crystals, the gap between the cement particles is increasingly bridged. During further hydration, the hardening steadily increases, but with decreasing speed. The density of the microstructure rises and the pores fill: the filling of pores causes strength gain.
***************************************************************************************
Lubricants
A lubricant (sometimes referred to as "lube") is a substance (often a liquid) introduced between two moving surfaces to reduce the friction between them, improving efficiency and reducing wear. They also have the function of dissolving foreign particles
One of the single largest applications for lubricants, in the form of motor oil, is to protect the internal combustion engines in motor vehicles and powered equipment
Lubricants perform the following key functions.
* Keep moving parts apart
* Reduce friction
* Transfer heat
* Carry away contaminants & debris
* Transmit power
* Protect against wear
* Prevent corrosion
* Seal for gasses
* Stop the risk of smoke and fire of objects
theory of friction
According to the law of conservation of energy, no energy is destroyed due to friction, though it may be lost to the system of concern. Energy is transformed from other forms into heat. A sliding hockey puck comes to rest because friction converts its kinetic energy into heat. Since heat quickly dissipates, many early philosophers, including Aristotle, wrongly concluded that moving objects lose energy without a driving force.
When an object is pushed along a surface, the energy converted to heat is given by:

where
Fn is the normal force,
μk is the coefficient of kinetic friction,
x is the coordinate along which the object transverses.
Types of lubricants
* Liquid including emulsions and suspensions
* Solid
* Greases
* Adhesive
Liquid lubricants
Liquid lubricants may be characterized in many different ways. One of the most common ways is by the type of base oil used. Following are the most common types.
* Lanolin (wool grease, natural water repellant)
* Water
* Mineral oils
* Vegetable (natural oil)
* Synthetic oils
* Others
Note: although generally lubricants are based on one type of base oil or another, it is quite possible to use mixtures of the base oils to meet performance requirements.
Solid lubricants
Teflon or PTFE
Teflon or PTFE is typically used as a coating layer on, for example, cooking utensils to provide a non-stick surface.
Mineral
Graphite, hexagonal Boron nitride ([3]), Molybdenum disulfide and Tungsten disulfide are examples of materials that can be used as solid lubricants, often to very high temperature. The use of such materials are still restricted by their poor resistance to oxidation (e.g., molybdenum disulfide can only be used up to 350C in air, but 1100C in reducing environments).